THE RIBOSOME

Structure of the large ribosomal subunit from human mitochondria

Alan Brown,* Alexey Amunts,* Xiao-chen Bai, Yoichiro Sugimoto, Patricia C. Edwards, Garib Murshudov, Sjors H. W. Scheres, V. Ramakrishnan†

Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including inclusion of mitochondrial valine transfer RNA (tRNA^{val}) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.

The human mitochondrial (mt) genome encodes 13 essential proteins of the oxidative phosphorylation (OXPHOS) complexes of the inner mitochondrial membrane. These proteins are translated by a dedicated set of ribosomes (mitoribosomes). The mitoribosome has a sedimentation coefficient of 55S and consists of a large subunit (LSU) (∼39S) and a small subunit (SSU) (∼28S). These subunits contain 16S ribosomal RNA (rRNA) and a 12S rRNA, respectively, and no 5S rRNA (I). They differ from cytoplasmic and bacterial ribosomes in having a high protein-to-RNA ratio. All proteins synthesized by human mitoribosomes are hydrophobic, integral membrane proteins, and some require prosthetic groups for folding and functioning. Unlike their cytoplasmic counterparts, human mitoribosomes are permanently tethered to the mitochondrial inner membrane through the LSU (2). Mitochondrial diseases affect >1 in 7500 live births (3), with defects of mitochondrial translation responsible for a subgroup associated with decreased OXPHOS activity (reviewed in (4)). Cancer cells have amplified OXPHOS capacity and elevated mitochondrial protein translation compared with adjacent stromal tissue (5). Specific inhibition of mitoribosomes has successfully induced selective cytotoxicity in leukemia cells (6), establishing mitoribosomes as drug targets for cancer. Furthermore, mitoribosomes are often the unintended targets of various clinically useful antibiotics that target protein synthesis by bacterial ribosomes (7).

The high-resolution structure of the yeast mt-LSU revealed a major remodeling of mitoribosomes compared with bacterial and cytoplasmic ribosomes (8). However, yeast mitoribosomes are themselves very distinct from mammalian mitoribosomes. Structural information for mammalian mitoribosomes is limited to a ~5 Å reconstruction of porcine LSU (9) and a ~7 Å structure of bovine 55S (10) that suggested substantial differences with the yeast mitoribosome. Here, we report a stereocore by a combination of rapid biochemical purification in mild conditions (11), and recent developments in data processing (12) and model building (8). We identify 16 more proteins than in the previous porcine model (9) and reveal mt-tRNA^{Val} as a key structural component of the mitoribosome.

Overall structure of human mt-LSU

Intact human mitoribosomes were purified from human embryonic kidney (HEK293) cells within 28 hours of mitochondria disruption (12) and visualized using single-particle cryogenic electron microscopy (cryo-EM) (fig. S1). The data were processed, resulting in a reconstruction that extends to 3.8 Å (fig. S1). The SSU displays considerable conformational heterogeneity with respect to the LSU, so the SSU map could not be interpreted with an atomic model. The use of a soft mask over just the LSU improved its map quality and overall resolution to 3.4 Å (fig. S1D).

The model of the human mt-LSU contains two structural RNA molecules (16S mt-LSU rRNA and the newly identified mt-tRNA^{Val}), as well as a tRNA bound to the E site (fig. S3), and 48 proteins, of which 21 are specific to mitochondria (table S2, fig. 1, and fig. S4). Five additional short protein elements remain unassigned but probably correspond to unbuilt protein extensions. The mt-LSU is highly protein-rich, with over two-thirds of the total mass of 1.7 MD consisting of proteins, of which 0.24 MD can be attributed to mitochondria-specific elements. This gives the human mt-LSU a distinct morphology from both bacterial ribosomes and yeast mitoribosomes (figs. S5 and S6). The connectivity between proteins has also expanded, with each protein making an average of 4.9 contacts (fig. S7). Both the average mass of the mitoribosomal proteins and the number of inter-protein contacts exceeds those of the mammalian cytoplasmic ribosome (13).

Although the protein composition has substantially increased, the length of mt-LSU rRNA (1559 nucleotides) has halved compared with bacterial 23S rRNA. Contracton has occurred in all domains (figs. S8 to S10). Using base-pair information extracted from the structure, we have constructed a revised secondary structure diagram of mt-LSU rRNA (fig. S7). In contrast to yeast mitoribosomes, where rRNA deletions are minor

Fig. 1. Overview of human mt-LSU. (A) Location of proteins in the human mt-LSU, showing (from left to right) solvent-facing, side, and exit tunnel views. (B) Views as in A, proteins conserved with bacteria (blue), extensions of homologous proteins (yellow), and mitochondria-specific proteins (red). rRNA is shown in gray.
and primarily occur at the tunnel exit (8), deletions of human mitoribosomal RNA are numerous and evenly distributed. The reduction is frequently a result of shortening surface-exposed helices. The extant regions are bridged by 37 short “bypass segments,” often of just 2 to 4 nucleotides (fig. S8). When internal helices are excised, the location of downstream rRNA elements typically remains unaffected. For example, helices 95 to 97 (including the sarcin-ricin loop that is essential for guanosine triphosphate (GTP)-catalyzed steps of translation) have conserved locations despite the absence of connecting stem h94, due to partial stabilization by mitochondria-specific proteins (fig. S11). Truncation of rRNA and the absence of 5S rRNA have presumably contributed to the loss of uL5, and bL25 from the mt-LSU compared with bacterial ribosomes (fig. S8). However, uL6 is absent despite strong conservation of the rRNA to which it binds.

Mitochondria-specific protein elements

Proteins homologous to those in bacteria are, on average, ~60% larger in the human mt-LSU. The extensions are shorter and not conserved with those in the yeast mitoribosome (8) (fig. S4). Although some of the extensions fill voids left by rRNA deletions, the amount of rRNA replacement by protein extensions is small (fig. S12). Some extensions protrude into solvent, but predominantly they interact with mitochondria-specific protein elements (table S3).

Mitochondria-specific proteins are peripherally distributed over the solvent-accessible surface of the ribosome (Fig. 1), with clusters at the central protuberance, the L7/L12 stalk, and adjacent to the polypeptide exit site. They have generally adopted new positions rather than compensating for lost rRNA (Fig. 1 and fig. S12), although a large deletion in domain III (h53 to h59) is occupied by a ~100-kD heterodimer of mL37 and mS30 (fig. S12). Other mitochondria-specific proteins that compensate for lost rRNA (mL41, mL42, mL49, and mL51) are relatively small proteins that help stabilize bypass segments. The effect of not compensating all lost rRNA is an architecture less compact than cytoplasmic ribosomes. Despite the increased porosity, the rRNA accessible to solvent has reduced by 52% compared with bacterial ribosomes. This decrease can only partially be accounted for by reduced rRNA content (41%), with new protein elements contributing by burying 32,500 Å² of rRNA surface. This agrees with the hypothesis that accretion of mitochondria-specific elements shield the rRNA from reactive oxygen species (14) that are elevated in mitochondria as a by-product of OXPHOS and are a major source of RNA damage.

Two of the proteins (mS30 and bS18a) were previously classified as components of the mt-SSU (10, 15). The presence of three sequence variants of bS18 had led to suggestions that differential incorporation of bS18 variants generates a heterogeneous population of mitoribosomes (16). However, the identification of bS18a in the mt-LSU suggests that bS18 variants may not promote structural diversity but represent a duplicated fold incorporated into distinct locations of the mitoribosome.

Mt-tRNAVal is a part of the central protuberance

The map of human mt-LSU reveals a density corresponding to an L-shaped RNA molecule located at the top of the central protuberance in a position similar to that occupied by 5S rRNA in cytoplasmic ribosomes (fig. S13). The RNA component was also reported in the porcine mitoribosome (9). We biochemically extracted the RNA molecule from purified human mt-LSU (fig. S13A) and, using deep RNA-sequencing (11), identified it as mt-tRNAVal (Fig. 2). A structural model of this tRNA agrees well with the density (fig. S13, B to D).

That mt-tRNAVal becomes incorporated over other tRNAs may result from its location in the mitochondrial genome (17). The mt-tRNAVal gene is flanked by the two mt-rRNA genes, which are

Fig. 2. Mt-tRNAVal is part of the human mitoribosome. (A) Mapping of rRNA-sequencing reads to total human (inset) and mitochondrial transcripts. (B) The anticodon stem-loop of mt-tRNAVal binds in a similar position to domain β of 5S rRNA.

Fig. 3. The central protuberance containing mt-tRNAVal, (A) Relative locations of proteins and mt-tRNAVal in the central protuberance. (B) View of (A) rotated by 180°, colored by proteins (top) and conservation (bottom) in accordance with Fig. 1. (C) Secondary structure of mt-tRNAVal. Modeled nucleotides are circled, and those interacting with surrounding proteins are colored. (D) The anticodon arm of mt-tRNAVal (blue) interacts extensively with proteins, whereas the acceptor arm is solvent exposed.
transcribed together as a polycistronic transcript (18) (fig. S13E). In bacteria, it is the 5S rRNA gene that is located adjacent to the rRNA genes and cotranscribed with them as part of a polycistronic message (19). As with 5S rRNA in bacteria, mt-tRNAVal would be present in stoichiometric amounts after processing and spatially coincident for incorporation into the LSU. The 12S rRNA-tRNAVal-ISR-16S rRNA organization is almost invariant among vertebrates (20).

Remodeling of the central protuberance

The central protuberance of the human mt-LSU is substantially different from other ribosomes, including the yeast mitoribosome, as a result of the absence of 5S rRNA and its associated proteins (uL5 and bL25) coupled with the incorporation of mt-tRNAVal and mitochondria-specific proteins (Fig. 3). Despite the remodeling, two functions of the central protuberance are maintained, through entirely mitochondria-specific elements—an interaction with the head of the small subunit and with tRNAs bound to the ribosome (fig. S14). This suggests that the interdependence between intersubunit communication and the fidelity of translation (21) is preserved in mitoribosomes. Due to functional flexibility at the interface, we could not assign the density mediating these functions to specific elements. It is coordinated by an entirely mitochondria-specific cluster (mL40, mL46, and mL48) that is bound to the base of the central protuberance (uL18, mL27, mL38, mL52, and ICT1) through mt-tRNAVal (Fig. 3B) and by an unknown mitochondria-specific protein of the small subunit (fig. S14). This region is likely to undergo structural rearrangement during translation [reviewed in (22)], for which mt-tRNAVal might provide the necessary plasticity. In the yeast mitoribosome, this function could be realized through specific rRNA expansion segments (8).

Mt-tRNAVal is located at the top of the central protuberance, with the acceptor stem exposed to solvent and less well resolved than the anticodon arm, which is ordered due to contact with uL18, mL38, mL40, and mL48 (Fig. 3, C and D). mL40 binds through a 70 Å-long helix that stretches from the tip of the acceptor arm to the anticodon stem, where it makes base-specific interactions in the major groove. uL18, mL38, and mL40 primarily interact with the phosphate backbone. The core architecture of the central protuberance is maintained by mL38, which intertwines with the proteins of the base of the central protuberance and anchors the central protuberance to the rRNA core of the LSU body (Fig. 3), thereby performing a similar role to 5S rRNA in cytoplasmic ribosomes. ICT1 and a long helical element of mL52 (Fig. 3 and fig. S15) further connect the central protuberance to the main body, whereas CRIF1 approaches from the opposite side. A structurally similar feature of an α helix bridging the body and central protuberance is seen in the yeast mitoribosome (8).

Remodeling of tRNA binding sites

Conventional tRNAs have four-armed cloverleaf secondary structures and L-shaped tertiary structures. However, many human mt-tRNAs have absent or reduced D- and/or T-loops that form the tRNA elbow (Fig. 4A) (23). To accommodate these highly variable loops, the tRNA-binding sites have dispensed with elements, common to other ribosomes that interact with the tRNA elbow (Fig. 4B). In the A site, uL25 and the tip of h38 that are responsible for fixing the elbow of A-site tRNA in bacteria (24, 25) have been lost. uL25 is also absent in the yeast mitoribosome (8). Similar deletions are observed in the P site, with the loss of the elbow-stabilizing uL5 and h84 (Fig. 4C). The L1 stalk, which controls the dynamics of tRNA ejection (26), also lacks the RNA

Fig. 4. Coevolution of mt-tRNAs and their binding sites. (A) Variability in the elbow region of human mt-tRNAs. The deletion of nucleotides relative to a bacterial tRNA (PDB ID: 2WDI) is shown by line color and thickness, with yellow and thick lines indicating most frequently deleted. (B) Modeling a bacterial A-site tRNA (purple) reveals that uL25 and 23S rRNA h38 (both gray) that stabilize the tRNA elbow region are deleted compared with bacterial ribosomes. (C) Similarly, uL5 and 23S rRNA h84 (both gray) that stabilize the elbow region of P-site tRNA (green) are deleted, but elements that bind the anticodon arm are conserved.

Fig. 5. Remodeling of the L7/L12 stalk. (A) Overview of new elements at the L7/L12 stalk. (B) bS18a forms a shared β sheet with mL53 to connect the stalk to the body of the mitoribosome. (C) The novel N-terminal extension of uL10 contributes a cysteine residue to a shared zinc-binding motif with bS18a. (D) Density for the N-terminal extension of uL10 that is highly coordinated to the body of the ribosome.
segments (h76 and h77) that bind the elbow of E-site tRNAs (27) (28) (figs. S8 and S9), although the remodeled stalk is not resolved in our structure. There do not appear to be additional stabilizing interactions at the acceptor stem, suggesting that human mt-tRNAs are less tightly bound to mitoribosomes.

The L7/L12 stalk

The L7/L12 stalk is a large ribosomal protrusion responsible for the recruitment of translation factors, as well as stimulation of factor-dependent GTP hydrolysis. In bacteria, it is formed by 23S rRNA (h42 to h44), uL10, uL11, and multiple copies of uL12 (29). In the absence of translational factors, the stalk is generally highly flexible and not well resolved in cryo-EM or crystal structures. In our reconstruction, the stalk is partially resolved (fig. S3B), allowing us to place homology models of uL10 and uL11. The stalk protein-binding platform (h43 and h44) is also resolved despite h42, which connects the platform to the main body of the ribosome, being remodeled and flexible.

The increased stability of the L7/L12 stalk is the product of an interprotein network not observed in other ribosomes (Fig. 5A). First, a mitochondria-specific stalk protein, mL53, bridges uL10 on the top of the stalk with bS18a in the body. The interaction between mL53 and bS18a is mediated through a shared β-sheet (Fig. 5B). Second, a mitochondria-specific N-terminal extension of uL10 forms a stable interaction with the main body of the mitoribosome, notably through a shared zinc-binding motif with S18a (Fig. 5C), and further coordinated by a C-terminal extension of uL16, mL63, and the loop of h39 (Fig. 5D). A linker region between the N-terminal extension and the conserved part of uL10 is not fully resolved in the maps, suggesting that some conformational flexibility is maintained. The differences in the L7/L12 stalk may explain why bacterial elongation factor G is incompatible with mammalian mitoribosomes (30). Additionally, uL6, which interacts with translational factors in bacteria, is not functionally replaced in the human mt-LSU (fig. S16).

The exit tunnel

The exit tunnel, through which nascent peptides pass before emerging from the ribosome, appears to be adapted for translating hydrophobic membrane proteins. Density for an endogenous polypeptide, or mixture of polypeptides, is seen throughout the exit tunnel and shows clear interactions with hydrophobic residues of the mitoribosomal tunnel wall, mainly from uL22 (Fig. 6A). These residues make the tunnel more hydrophobic than in cytoplasmic ribosomes (23). The hydrophobic nature of both the translated polypeptide and the exit tunnel may explain why a polypeptide remains trapped in the exit tunnel despite the lack of a P-site tRNA to tether it in the ribosome. Although the nascent peptide is better resolved in the upper part of the tunnel, broken density consistent with a helical structure is apparent closer to the exit. Thus, helices of mitochondrial OXPHOS proteins may start forming within the mitoribosomal tunnel similar to what has been seen in cytoplasmic ribosomes (23), and the hydrophobic nature of the wall may aid this by mimicking the hydrophobic environment of the membrane that is the eventual site of these proteins. In addition, the increased hydrophobic interactions could act to slow the rate of elongation, allowing more time for transmembrane domains to fold and for assembly of OXPHOS complexes.

The presence of a nascent polypeptide also unambiguously delineates the overall tunnel path, which is similar to that of bacterial and cytoplasmic ribosomes (Fig. 6B) and different from the yeast mitoribosome (8). The alternative exit tunnel observed in yeast results from deletion of rRNA h16 to 20 and h24 (fig. S17). Despite similar deletions in domain I of the human mitoribosome, a short segment that replaces h24 (nucleotides 1806 to 1813) seals this potential exit and precludes a yeast-like tunnel path being formed in human mitoribosomes (fig. S17). The peptidyl transfer center and upper tunnel of the human mt-LSU are architecturally similar to bacterial ribosomes and do not show the constriction observed in yeast (8).

The exit site of the mitoribosomal tunnel, where the nascent chain emerges, has two roles: forming a docking platform for maturation factors and tethering mitoribosomes to the inner mitochondrial membrane. In the human mt-LSU, this region is remodeled, with two rRNA deletions (h7 and h24) compensated by extensions and conformational changes of the conserved proteins that line the tunnel walls (Fig. 6, B to D). Deletion of h24 has caused a positional change of a β hairpin of uL24, which exposes uL22 to the nascent polypeptide.
A notable example of emergence in physics is fractionalization, where the long-wavelength, low-energy excitations of a many-body quantum phase of matter possess quantum numbers that are fractions of those of the microscopic constituents. In a fractional quantum Hall state, for example, the emergent quasiparticle excitations carry fractional electric charge and anyonic quantum statistics. In a quantum spin liquid (QSL), the electron fractionalizes at low energies into two quasi-particles—a spinon and a holon—that independently carry the spin and charge of the electron ($1/2$). When an electron is injected into such systems, it can decay into fractionalized components, but a direct quantum mechanical conversion of an electron to a single fractionalized quasi-particle has conventionally been thought to be impossible. Consequently, the question of how to experimentally detect fractionalization in a QSL, even in principle, has remained a major challenge. It is particularly timely to revisit this question, given the number of materials that have recently been shown to exhibit anomalous properties that may indicate that they are QSLs (γ).

Here we show that some QSLs allow electrons to coherently enter through their boundary as a fractionalized quasi-particle, leaving behind their charge, spin, or even Fermi statistics. We show that this leads to universal experimental signatures that could provide incontrovertible evidence of fractionalization. Our considerations are based on recent theoretical breakthroughs regarding the physics of two-dimensional (2D) topologically ordered states with extrinsic line and point defects (10–19), of which robust boundary phenomena are a special case.

We focus primarily on explaining these phenomena in the context of the simplest gapped 2D QSL, the Z_2 short-ranged resonating valence bond (sRVB) state, and explaining how it can be distinguished from nonfractionalized magnetic insulators, or even from QSLs with different types of fractionalization. This type of QSL has been proposed (20) to explain recent neutron scattering experiments in $\text{ZnCu}_2\text{(OH)}_6\text{Cl}_2$ (herbertsmithite) (21) and also a number of experimental observations for the organic compound $\text{c-(ET)}_2\text{Cu}_2\text{CN}_3$ (22). We build on recent results that demonstrate that gapped fractionalized phases support topologically distinct types of gapped boundaries.

ACKNOWLEDGMENTS

We thank Y. Gordiyenko for help with fRNA purification; S. Paty-Chew and M. Sivel for mass spectrometry; G. McMullan, S. Chen, and C. Savva for help with data collection; J. Grimmett and T. Darin for help with computing; and I. S. Fernández and J. L. Läuger for stimulating discussions. This work was funded by grants from the UK Medical Research Council (MC_U105184332 to V.R. and MC_UP_A025_1013 to S.H.W.S.); a Wellcome Trust Senior Investigator award (WT006570), the Agouron Institute and the Jeantet Foundation (V.R.); fellowships from Human Frontiers Science Program (A.A.), and EU FP7 Marie Curie (X.B.). Cryo-EM density maps have been deposited with the Electron Microscopy Data Bank (accession number EMD-2762), and coordinates have been deposited with the Protein Data Bank (PDB) (entry code 3J7Y).

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/346/6210/718/suppl/DC1

Materials and Methods

Figs. S1 to S8

Tables S1 to S6

References (2e–22)

30 June 2014; accepted 23 September 2014

Published online 2 October 2014

10.1126/science.1258026

REPORTS

QUANTUM REPORTS

Coherent transmutation of electrons into fractionalized anyons

Maissam Barkeshli, 1* Erez Berg, 2* Steven Kivelson 3

Electrons have three quantized properties—charge, spin, and Fermi statistics—that are directly responsible for a vast array of phenomena. Here we show how these properties can be continuously and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs.

In this issue, we present Coherent transmutation of electrons into fractionalized anyons (Maissam Barkeshli, Erez Berg, Steven Kivelson). This paper demonstrates how electrons can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs.

REFERENCES AND NOTES

5. F. Sofija et al., Cell Cycle 11, 4390–4401 (2012).
11. Materials and methods are available as supplementary materials on Science Online.
Structure of the large ribosomal subunit from human mitochondria
Alan Brown et al.
Science 346, 718 (2014);
DOI: 10.1126/science.1258026

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of August 5, 2015):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/346/6210/718.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2014/10/01/science.1258026.DC1.html

This article cites 115 articles, 38 of which can be accessed free:
http://www.sciencemag.org/content/346/6210/718.full.html#ref-list-1

This article has been cited by 11 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/346/6210/718.full.html#related-urls

This article appears in the following subject collections:
Biochemistry
http://www.sciencemag.org/cgi/collection/biochem